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General relativity and conformal invariance: 
I A new look at some old field equations 
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Abstract. In this, the first of a pair of related papers, it is argued that general relativity allows 
more freedom in the choice of the metric than is usually supposed. In particular, con- 
formally equivalent classes of metrics are to be regarded as physically equivalent. The 
theory is thus conformally invariant-a fact which is obscured by the non-conformally 
covariant way in which the field equations are usually written. Furthermore, there may be 
situations in which this usual way of writing the field equations is liable to give misleading 
results in the same way that a bad choice of coordinate system can lead to non-physical 
results. Another representation is given which does not suffer from this disadvantage and in 
a companion paper we shall apply this new representation to the problem of black holes and 
obtain some rather surprising results. 

1. Introduction 

Consider the field equations 

These are well known to be conformally invariant. O’Hanlon and Tupper (1973a, b) 
start from a general scalar-tensor theory and restrict it to be conformally invariant. 
Bramson (1974) gives a spinor formulation. Pandres and Zund (1974) derive them 
from Dirac’s (1973) theory-which is identical in structure to the theories proposed by 
Omote (1971, 1974), Lord (1972), Freund (1974) and Utiyama (1975)-Hoyle and 
Narlikar (1964, 1974) derive them as a smooth-fluid approximation to their con- 
formally invariant action-at-a-distance theory, and most recently Canuto er a1 (1977) 
have used the same equations, i.e. invariant under the transformation 

(2) 8iK = A 2 giK 6 = A-’u 

and to reduce in the ‘conformal frame’ defined by 

(+ = constant = f fA 

to the standard equations of general relativity with 
2 1  

t Present address: c/o IEE Publishing Department, PO Box 8, Southgate House, Stevenage, Herts SG1 
1HQ. 
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Now, in units with c = h = 1 so that length and time are measured with the same unit and 
mass with the inverse length unit (the mass of a particle m is given by m = qu where q is 
a dimensionless constant associated with the particle, called its inertial charge), the 
transformation (2) represents a space-time-dependent change in the length unit. Thus, 
if we represent the ‘length unit by a scalar field L, equation (2) corresponds to the 
transformation 

i = APL.  

The choice of length unit is purely a matter of human convention. This was recognized 
by Dicke (1962): ‘Imagine if you will that you are told by a space traveller that a 
hydrogen atom on Sirius has the same diameter as one on Earth. A few moments 
thought will convince you that this statement is either a definition or else meaningless, 
and is also contained in Poincare’s (1929, 1946) geometrical conventionalism, which 
was explicitly endorsed by Einstein (1949). 

General relativity is par excellence the theory in which human conventions are 
eliminated from the basic structure of the theory, and yet, although the choice of length 
unit is just as much a human convention as the choice of coordinate system, general 
relativity is almost always written in the restricted form with the arbitrary condition of 
equation (3) imposed. 

The restricted form of the theory has become so ingrained into our habits of thinking 
that even those authors who have produced the equations (1) have failed to recognise 
them for what they are-the full equations of general relativity-and have regarded 
them as a new theory which turns out, through equation (3), to be equivalent to general 
relativity, which they identify with the restricted equations. 

Perhaps we should give Dicke’s statement (quoted earlier) more than just a few 
moments thought, for, once the dependence of the length unit on human conventions is 
realised, it becomes just as contrary to  the spirit of general relativity to insist on using 
the same length unit in all situations as it is to insist on using the same coordinate system 
in all situations. 

There is a danger in using the same coordinate system under all circumstances that 
effects which are merely due to that choice of coordinate may be taken as having some 
real physical significance. This is especially true in the case of singularities; think for 
instance of the Schwarzchild singularity. 

An exactly parallel danger exists if we insist on using the same length unit in every 
situation. We can see this as follows. 

To be an allowable length unit the scalar field must satisfy 

O < L < x  (6) 

since it is obviously impossible to measure anything with a length that is itself zero or 
infinite. In order to preserve the condition (6) the conformal transformations must be 
restricted to be non-singular, i.e. such that 

(7) 

Now, suppose that we have an allowable frame, which need not necessarily be identical 
to the frame defined by equation (41, which we call frame A. In the allowable frame 
therefore, the field u will have some specific variation over the manifold u = u ( x ) .  In 
order to transform to frame A we need to use the transformation function 

0 < h < x. 

h = (+/(TA (8) 
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for then 

We thus see that frame A will only be an allowable frame if the conformal trans- 
formation function given by equation (8) satisfies equation (7). 

If we postulate that there is an allowable frame in which all particles have positive 
mass we can ensure that U > 0 in this frame and hence that A > O f .  However, it is not SO 

easy to dismiss the possibility that the manifold may contain singularities where (+ (and 
hence A) tend to infinity. 

In fact, this possibility appears very likely when we consider the wave equation for a 
obtained by taking the trace of equation (1) 

n2a + $Ru = T/u = S (9) 

where S represents the density of inertial charge. (This can be seen as follows: 
represent the matter as a system of particles, with the ath particle ( a  = 1, 2 . .  .) being 
represented by a cm timelike curve a lA(a )  in the manifold where the parameter a 
represents the proper time along the curve. Let the particle have a constant inertial 
charge qa and hence mass ma = qaa(A) which varies as A moves along the curve. The 
energy-momentum tensor for the system is then 

the notation being that of Hoyle and Narlikar (1964), and g:, being the bivector of 
geodetic parallel displacement. Then 

T = 1 ma8‘4’(X, A)(-i)-”* da  
a 

so that 

T/u = S = 1 qa8‘4’(X, A)(-gj-1’2 da 
a 

which is the density of inertial charge.) The RHS of equation (9) is thus not explicitly 
dependent on a, so that against a fixed metric background equation (9) is linear. If the 
sources are point particles, S contains 8-function terms which will lead to singularities 
in  U. 

At this stage the argument is merely suggestive of the fact that frame A may not be 
allowable under certain circumstances-and hence that we should be careful about 
using it. However, when we actually start to solve any particular problem in the theory 
we need a conformal frame to work in (in the same way that we need a coordinate frame 
to work in), and we would like to find one which we can be sure is allowable. Such a 
frame could then be used as the standard against which to judge the allowability of 
frame A. 

Fortunately, such a conformal frame is available. This is the frame B defined by 
Islam (1969, 1970) in his investigations of Hoyle and Narlikar’s conformal theory of 
gravity. 

t The idea of allowable and non-allowable frames has been discussed in a cosmological context by Hoyle and 
Narlikar (1974). They allow ’regions of negative mass’ and hence discuss situations where the non- 
allowability is associated with CT = 0. 
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Frame A is defined over the whole of the manifold by the condition that U be con- 
stant. Frame B is defined in a local region of the manifold by the condition that the 
non-local part of U be constant. (This means that frame B is locally adapted, i.e. local 
problems can be solved in purely local terms, the distant matter only being concerned in 
so far as it generates the constant ‘background’ field.) 

Thus, given a localised distribution of matter, we can divide the total mass field 
a-for instance by using the Kirchoff -type integral formula derived from equation 
(9)-into a part generated by the local matter, U(I) and a non-local part (T(d) which will 
consist of the fields generated by the non-local matter together with any totally 
source-free part of U ,  

Within the local region we assume that, in an allowable frame, any singularities in 
the total mass field U have a local cause and are not due to some ‘cosmic conspiracy’ 
involving the non-local fields combining together in some way to generate the local 
singularity. Thus, any singularities in U will be in the local part and the non-local 
part ( + ( d )  will be singularity-free. 

Hence frame B defined by 

( T ( d )  =constant = uo (10) 
is an allowable frame, and is thus-while the allowability of frame A remains in 
doubt-to be preferred to frame A for the solution of local problems. 

2. Equations in frame B 

2.1. Lemma 1 

The field equations in frame B, in the local region, take the form 

U2a = S = T/(u + uo) 

where from now on we use U for ( + ( I )  (our previous U ,  the total mass field, is thus written 
U +ao), and uii as ul, = ulK. 

Proof: Since ( + ( d )  is source-free in the local region and since, as discussed in detail 
above, equation (9) is linear we have in the local region 

0 2 U ( d ,  + a R U ( d )  = 0 (13) 

R=O (14) 

and since in frame B u ( d )  also satisfies equation (10) this leads to 

(since all inertial charges are positive and we assume that there is some distant matter 
we have U ( d )  > 0). Using equations (14) and (10) in the field equations (1) and (9) then 
gives 

and 
Czu = T / ( a  + ao). 
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The second of these equations is just equation (1  1); substituting it into equation (15) 
gives the desired result (equation (12)). 

In what follows we shall wish to apply these equations in the part of the local region 
exterior to the matter. So setting T,, = 0 we get the following vacuum equations: 

02u = 0 (16) 

and 

Note the fundamental difference between this set of equations and the general field 
equations (1) and (9). In that case there is a redundancy, equation (9) being the trace of 
equation (1) .  This redundancy is due to the freedom of choice of conformal frame. In a 
specific conformal frame, such as frame A or frame B, this redundancy disappears. The 
situation is exactly analogous to the four extra equations one adds as coordinate 
conditions to eliminate the redundancy due to the freedom of choice of coordinate 
system. 

2.2. Lemma 2 

The Newtonian approximation to the solution of the field equations ( l l ) ,  (12) is 

gab =-Sab ga4 0 

g44 Z= 1 +!c$ u/uo--4c$ 

where c$ is the Newtonian gravitational potential and {xa, x4} (a  = 1 ,2 ,  3) are asymp- 
totically Cartesian coordinates. 

Proof: The technique for obtaining the Newtonian approximation to the field 
equations is well known and can be found in any standard textbook on general relativity 
(see for instance Weinberg 1972). Taking the energy-momentum tensor to Newtonian 
order we get 

T44 = T = p = 1 uoq,S(x -xa) = 1 mo"S(x -xa) 
a a 

the Newtonian mass density. Then using the approximation 

R - 1 2  
44-  - 2v g44 

equation (11) and the 4-4 component of equation (12) give 

2 8 v2 a/ao = -p/ao, v2g44 = 2 P. 
U 0  

Define c$ to be such that 

v24 = 3p/u; (4  + 0 at infinity) 

then 
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To show that 4 is indeed the Newtonian potential consider the equation of motion for a 
particle. This is given by Hoyle and Narlikar (1964)  and is 

d d a '  , d a " d a '  - g ' K -  ama 
- ma- + m a r K * - - -  
d a (  d a )  da da ax 

which, when approximated to Newtonian order, becomes 

d2x' 1 dg44 1 am, 
dt2 2 ax' m: ax' 
-= 

(22) 

which is just the Newtonian equation of motion with 4 to be identified with the 
Newtonian potential. 

The gravitational mass 

4 - -m/r 

which leads to 

3 m =- 2 c  4TUo a 

m of the system is defined by the monopole term in 

(24) 

a 3  mo = y m o  
4rruo 

where mo is the total inertial mass of the system. Thus to Newtonian order the 
gravitational constant G defined such that m = Gmo is given by 

(26) 2 G = 3 / 4 ~ ~ o  

which agrees with equation (4) to this order. 
Note that equations (18) and (19) apply only in frame B. In other conformal frames 

the Newtonian gravitational force is split in different proportions between metric eff ects 
and variable mass effects, neither of which is observable separately, the observable 
force being the combined force given by equation (23). 

3. Conclusion 

We have shown that general relativity needs to be conformally invariant just as much as 
it needs to be coordinate invariant. Furthermore, the usual way of writing the equations 
is possibly misleading in the same way that a coordinate singularity could be misleading. 
We have obtained a new representation (frame B) in which there is no such possibility. 
In this new representation the field equations and their Newtonian approximations 
have been given. Note that the conformal invariance of the theory ensures that there is 
no difference between the new representation and the standard one as regards the usual 
experimental tests of the theory. 

In a subsequent paper we will show, however, that the two representations differ 
considerably in their predictions about black holes and singularities. 
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